6,172 research outputs found

    Thermodynamical description of heavy ion collisions

    Get PDF
    We analyze the thermodynamical state of nuclear matter in transport descriptions of heavy ion reactions. We determine thermodynamical variables from an analysis of local momentum space distributions and compare to blast model parameters from an analysis of fragment energy spectra. These descriptions are applied to spectator and fireball matter in semi-central and central Au+Au collisions at SIS-energies, respectively.Comment: 4 pages, 2 postscript-figures, to be published in the proceedings of Bologna2000: Structure of the Nucleus at the Dawn of the Century, Bologna, Italy, 29 May - 3 Jun 200

    Effects of the liquid-gas phase transition and cluster formation on the symmetry energy

    Full text link
    Various definitions of the symmetry energy are introduced for nuclei, dilute nuclear matter below saturation density and stellar matter, which is found in compact stars or core-collapse supernovae. The resulting differences are exemplified by calculations in a theoretical approach based on a generalized relativistic density functional for dense matter. It contains nucleonic clusters as explicit degrees of freedom with medium dependent properties that are derived for light clusters from a quantum statistical approach. With such a model the dissolution of clusters at high densities can be described. The effects of the liquid-gas phase transition in nuclear matter and of cluster formation in stellar matter on the density dependence of the symmetry energy are studied for different temperatures. It is observed that correlations and the formation of inhomogeneous matter at low densities and temperatures causes an increase of the symmetry energy as compared to calculations assuming a uniform uncorrelated spatial distribution of constituent baryons and leptons.Comment: 20 pages, 19 figures, version accepted for publication in EPJA special volume on Nuclear Symmetry Energ

    Testing Dirac-Brueckner models in collective flow of heavy-ion collisions

    Get PDF
    We investigate differential in-plane and out-of-plane flow observables in heavy ion reactions at intermediate energies from 0.2Ă·20.2\div 2 AGeV within the framework of relativistic BUU transport calculations. The mean field is based on microscopic Dirac-Brueckner-Hartree-Fock (DBHF) calculations. We apply two different sets of DBHF predictions, those of ter Haar and Malfliet and more recent ones from the T\"ubingen group, which are similar in general but differ in details. The latter DBHF calculations exclude spurious contributions from the negative energy sector to the mean field which results in a slightly softer equation of state and a less repulsive momentum dependence of the nucleon-nucleus potential at high densities and high momenta. For the application to heavy ion collisions in both cases non-equilibrium features of the phase space are taken into account on the level of the effective interaction. The systematic comparison to experimental data favours the less repulsive and softer model. Relative to non-relativistic approaches one obtains larger values of the effective nucleon mass. This produces a sufficient amount of repulsion to describe the differential flow data reasonably well.Comment: 14 pages Revtex, 19 figures, discussion extended and two figures added, accepted for publication in EPJ
    • …
    corecore